Design Considerations for Sensor Networks with Gateways
نویسندگان
چکیده
In a large class of sensor network deployments, a small subset of the sensors covering the sensor field is equipped with special communications capability to communicate with operators outside the sensor field. These sensors play the role of gateways for off-field communication in the sense that all communications toor out of the field is through these nodes, and the other non-gateway nodes are only capable of sensor-to-sensor communication. This design achieves a lower cost by concentrating expensive communication devices in a small subset of nodes. An important problem in designing such gateway-based sensor networks is determining the number of gateway nodes needed, their location in the sensor field, and the automation of the sensor-to-gateway association for off-field communication. These design considerations are addressed in this paper. In determining the number of gateways the tradeoff is between performance and cost. As the number of gateways increases, less traffic load is placed on each gateway and its surrounding nodes, resulting in longer network lifetime and larger off-field aggregate transmission capacity. However, with a larger number of gateways the network may be too costly to deploy as gateway nodes are more expensive than non-gateway sensor nodes. We develop and analyze models that allow us to determine the optimal number of gateways and their location in the sensor field. We also provide initial results with respect to determining the needed number of fusion nodes. While the presence of multiple gateways offers a higher degree of off-field communication reliability, a sensor will need to select one of the gateways at a time for off-field communication. In this paper, we also propose a dynamic sensor-to-gateway association protocol. Based on current energy levels, the distributed protocol dynamically assigns sensors to gateways in such a way that the overall transmission load is balanced among the different gateway regions over the lifetime of the sensor field.
منابع مشابه
The Case Study Of System Architecture In Wireless Sensor Networks: The Kindergarten Safety System (Kss)
In Wireless Sensor Networks (WSNs) and Wireless Personal Area Networks (WPANs), IEEE802.15.4 [1] has emerged as one of the most promising radio specifications for physical layer and medium access control, guaranteeing low rate and low power communication independent of infrastructure. To utilize the collected information under WSNs, the data typically pass through gateways or sinks. Simultaneou...
متن کاملDesign and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks
Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...
متن کاملHybrid Key pre-distribution scheme for wireless sensor network based on combinatorial design
Key distribution is an important problem in wireless sensor networks where sensor nodesare randomly scattered in adversarial environments.Due to the random deployment of sensors, a list of keys must be pre-distributed to each sensor node before deployment. To establish a secure communication, two nodes must share common key from their key-rings. Otherwise, they can find a key- path in which ens...
متن کاملDesign of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter
This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...
متن کاملA Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks
Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005